Terahertz radiation-enhanced-emission-of-fluorescence

نویسندگان

  • Jingle LIU
  • Xi-Cheng ZHANG
چکیده

Terahertz (THz) wave science and technology have been found countless applications in biomedical imaging, security screening, and non-destructive testing as they approach maturity. However, due to the challenge of high ambient moisture absorption, the development of remote open-air broadband THz spectroscopy technology is lagging behind the compelling need that exists in homeland security, astronomy and environmental monitoring. Furthermore, the underlying physical mechanisms behind the interaction between the THz wave and laserinduced plasma which responds strongly to electromagnetic waves have not been fully understood. This review aims to explain the light-plasma interaction at THz frequencies within a semiclassical framework along with experimental study of the femtosecond-laserinduced nitrogen plasma fluorescence under the illumination of single-cycle THz pulses. The results indicate that THz-radiation-enhanced-emission-of-fluorescence (THzREEF) is dominated by electron kinetics in the THz field and the electron-impact excitation of gas molecules/ions. The information of the time-dependent THz field can be recovered from the measured time-resolved THz-REEF from single-color laser induced plasma with the help of the bias as local oscillator. The calculations and experimental verification lead to complete understanding of the science behind these effects and push forward to extend their capabilities in related applications such as remote THz sensing, plasma diagnostics and ultrafast photoluminescence modulation. Systematic studies in selected gases including neon, argon, krypton, xenon, methane (CH4), ethane (C2H6), propane (C3H8), and n-butane (C4H10) gases were performed to obtain an improved understanding of the THz-REEF. The dependences of the enhanced fluorescence on the THz field, laser excitation intensity, gas pressure, and intrinsic atomic properties were experimentally characterized. Both narrow line emission and broad continuum emission of the gas plasma were enhanced by the THz field. Their fluorescence enhancement ratios and time-resolved enhanced fluorescence were largely dependent on the scattering cross section and ionization potential of atoms. For the first time, we demonstrated a novel ‘all-optical’ technique of broadband THz wave remote sensing by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma that interacted with THz waves. By studying the ultrafast electron dynamics under the single cycle THz radiation, we found that the fluorescence emission from laser-induced air plasma was highly dependent on the THz electric field and the symmetry of the electron drift velocity distribution created by two-color laser fields. The time-resolved THz-REEF can be tailored by switching the relative two-color phase and laser polarizations. Owing to the high atmospheric transparency and omni-directional emission pattern of fluorescence, this technique can be used to measure THz pulses at standoff distances with minimal water vapor absorption and unlimited directionality for optical signal collection. The coherent THz wave detection at a distance of 10 m had been demonstrated. The combination of this method and previously demonstrated remote THz generation would eventually make remote THz spectroscopy available. We also introduced a unique plasma diagnostic method utilizing the THz-wave-enhanced fluorescence emission from the excited atoms or molecules. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-delay-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies were systematically investigated. This plasma diagnostic method offers picosecond temporal resolution and is capable of omnidirectional optical signal collection. The ultrafast quenching dynamics of laser-pulseReceived December 5, 2013; accepted January 15, 2014 E-mail: [email protected], [email protected] Front. Optoelectron. DOI 10.1007/s12200-014-0396-4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terahertz-radiation-enhanced emission of fluorescence from gas plasma.

We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of t...

متن کامل

Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer.

Emission of terahertz radiation is observed when surface plasmons are excited on a thin film of gold, in the Kretschmann geometry. When a hemicyanine-terminated alkanethiol self-assembled monolayer of thickness 1.2 nm is deposited on the gold film, stronger terahertz emission is observed. Our experimental results confirm that enhanced terahertz emission is possible from planar gold surfaces whe...

متن کامل

Terahertz emission from electric field singularities in biased semiconductors.

We use electric field singularities in biased metal semiconductor microstructures to enhance the generation of terahertz (THz) radiation from semiconductors. We find that, regardless of the mechanism that is responsible for enhanced THz emission near the anode, singular electric fields near sharp anode features will enhance this emission by as much as an order of magnitude. We show scanning THz...

متن کامل

Terahertz Emission From Magneto-plasma Oscillations in Semiconductors

Ultrafast terahertz spectroscopy can be used to probe charge and spin dynamics in semiconductors. We have studied THz emission from bulk InAs and GaAs and from GaAs/AlGaAs quantum wells as a function of magnetic field. Ultrashort pulses of THz radiation were produced at semiconductor surfaces by photoexcitation with a femtosecond TiSapphire laser, and we recorded the THz emission spectrum and t...

متن کامل

Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating.

The second-order processes of optical-rectification and photoconduction are well known and widely used to produce ultrafast electromagnetic pulses in the terahertz frequency domain. We present a new form of rectification that relies on the excitation of surface plasmons in metal films deposited on a shallow grating. Multiphoton ionization and ponderomotive acceleration of electrons in the enhan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014